翻訳と辞書
Words near each other
・ Orthogenysuchus
・ Orthogeomys
・ Orthognathic surgery
・ Orthogonal (novel)
・ Orthogonal array
・ Orthogonal array testing
・ Orthogonal basis
・ Orthogonal collocation
・ Orthogonal complement
・ Orthogonal convex hull
・ Orthogonal coordinates
・ Orthogonal Defect Classification
・ Orthogonal diagonalization
・ Orthogonal frequency-division multiple access
・ Orthogonal frequency-division multiplexing
Orthogonal functions
・ Orthogonal group
・ Orthogonal instruction set
・ Orthogonal matrix
・ Orthogonal polarization spectral imaging
・ Orthogonal polynomials
・ Orthogonal polynomials on the unit circle
・ Orthogonal Procrustes problem
・ Orthogonal symmetric Lie algebra
・ Orthogonal trajectory
・ Orthogonal transformation
・ Orthogonal wavelet
・ Orthogonality
・ Orthogonality (programming)
・ Orthogonality (term rewriting)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Orthogonal functions : ウィキペディア英語版
Orthogonal functions
In mathematics, two functions f and g are called orthogonal if their inner product \langle f,g\rangle is zero for ''f'' ≠ ''g''.
==Choice of inner product==
How the inner product of two functions is defined may vary depending on context. However, a typical definition of an inner product for functions is
: \langle f,g\rangle = \int f(x) ^
* g(x)\,dx
with appropriate integration boundaries. Here, the asterisk indicates the complex conjugate of f.
For another perspective on this inner product, suppose approximating vectors \vec and \vec are created whose entries are the values of the functions ''f'' and ''g'', sampled at equally spaced points. Then this inner product between ''f'' and ''g'' can be roughly understood as the dot product between approximating vectors \vec and \vec, in the limit as the number of sampling points goes to infinity. Thus, roughly, two functions are orthogonal if their approximating vectors are perpendicular (under this common inner product).()

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Orthogonal functions」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.